ﬂE Evolution of a scroll ring in an oscillatory
medium close to a Neumann boundary
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Oscillatory media Scroll rings Boundary induced drift

Close to a supercritical Hopf bifurcation, reaction-diffusion systems - the filament is a circle of radius R({) - interaction of a 2-D spiral wave with a
can be approximated by the complex Ginzburg-Landau equation straight Neumann boundary = interaction
(CGLE) [1]. with its mirror image

EA =A+(1+ia)AA—(1+iB)|A° A - discrete set (*)f attracting trajectories at
ot distances (2; )ien from the boundary [3]

parameters a and 8 can be obtained by:

- reductive perturbation theory: @ nobound

_O'sz;iiﬁ' “region of absolute - i=1: limit cycle motion in a drifting, comoving
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calculated perturbatively for the 1Y o @nefative bt - no interaction at z>>A
modified Oregonator model using -o_gg"
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- drift velocity decreases with increasing Z;—k

- in the parameter region where a straight s
filament is stable, scroll rings contract and 1l z-
the drift velocity along their symmetry axis Rl s
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- quenching experiments [4] ' 9 2] 92 _

d 1 +a?

- measurement of filament tension c Clar ent tension determined — R=-— (1) —z=0 (2) 72 ' ' N
] . - — _ TN\/\AMMW
In units adapted to the system: experimentally from -RR dr R dr 7

2 2 k, w(k)- wave number and respective
1+a — Ck frequency of a plane wave _ _
a—B wlk)—wyom whom - oscillation frequency of the A asymptotic wavelength of the unperturbed spiral

homogeneous system

Q: What insight can we gain into the 3-D Q: What can we learn about Q: Which effects persist in 3-D7?
dynamics of RD systems? scroll rings in the CGLE?
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Characterization of 3-D dynamics

Cooperative setting

Filament contraction

Depending on the initial distance z,, three types of

behavior are observed:

* z,>1.7\: the dynamic follows equations (1) and (2)
for the free scroll ring

« 1.7A>z,>1.2\: contraction is speeded up

e T _ _ _ _ « 1.2\>z,: contraction is speeded up, superimposed

time t by an oscillation

The intrinsic dynamics of
the scroll ring acts in the
same direction as the
boundary-induced drift.

Antagonistic setting

Filament contraction or expansion

_ _ * z,>1.7A: free scroll ring approximation remains valid
the scroll ring gcts against * 1.7A>z,>1.0A: contraction is slowed down

the boundary-induced * 1.0A>z,: boundary-induced drift dominates over

drift. _ 6 f - . . .
055 | al | contraction, resulting in expansion
et ! 27 '
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The intrinsic dynamics of

Phenomenological theory Tilted scroll ring

- antagonistic configuration —
- a circular segment of the

filament belongs to the basin

of the attractor that features

meandering type motion

addition of velocity contibutions phase plane

motion due to filament tension n sequence of saddle points (R; , z;) where
+ velocity of boundary induced drift R Z;-k are fixed points from 2-D calculations [3]

and 1+a?
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- the meandering part of the
filament acts as a source of
"rope waves" that move along
the free filament
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- different rotation freqﬁencies
result in phase twist

drift / meandering &
drift/ meandering -
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