

Threshold and gain measurements of AlGaNbased UVC lasers

&

Temperature dependent electroluminescence spectroscopy on AlGaN-based 235nm far-UVC LEDs with different active region growth temperatures

Markus Blonski & Paula Vierck | Institute of Solid State Physics

Schwellen- und Gewinnmessungen bei AlGaNbasierten UVC Lasern

&

Temperaturabhängige Elektrolumineszenzspektroskopie an 235 nm AlGaN UVC LEDs mit variabler Wachstumstemperatur der aktiven Zone

Markus Blonski & Paula Vierck | Institute of Solid State Physics

LED Bändermodell

[1] Das Neue Physikalische Grundpraktikum, Eichler, Kronfeldt, Sahm

[2] https://www.researchgate.net/figure/Theoretical-light-emitting-diode-spectrum-as-a-product-of-the-density-of-energy-states_fig34_268054048

Photon-Elektron-Wechselwirkung

[1]

[1] Das Neue Physikalische Grundpraktikum, Eichler, Kronfeldt, Sahm

UV-Spektrum

[3] https://www.uvfab.com/uv-spectrum-and-applications/

UV-C Anwendungen

HOW IT WORKS

LASIK eye surgery...

Cornea

Once tissue has been removed, the flap is folded back onto the cornea and heals quickly.

UV laser Pulses of ultraviolet laser light vaporise surface tissue, reshaping the cornea.

Bull's-eye A laser projects a target on the eye at which the UV laser beam can aim.

> Flap A special surgical knife slices a flap open on the

Retina After surgery, light rays entering the eye are focused to a point on the retina, producing a much clearer image.

DID YOU KNOW? LASIK is a kir eye surgery u far-sightedne

surface of the cornea.

LASIK is a kind of refractive laser eye surgery used to treat near- and far-sightedness and astigmatism.

[4] https://www.coherent.com/de/lasers/excimer/indystar

[5] https://www.kotte-zeller.de/origin-outdoors-trinkflasche-fairbanks-mit-uv-wasserfilter-schwarz-fuer-outdoor-zur-notversorgung

[6] https://www.howitworksdaily.com/how-does-laser-eye-surgery-work/

Motivation

7

Edge-Emitting Lasers (EELs)

	AlN 10 nm cap
	Al _{0.63} Ga _{0.37} N 50 nm p-WG
	Al _x Ga _{1-x} N y nm SQW
-	Al _{0.63} Ga _{0.37} N:Si 50 nm n-WG
	Al _{0.76} Ga _{0.24} N:Si 900 nm cladding
	Al _{0.76} Ga _{0.24} N 100 nm buffer
	AlN-Al _{0.76} Ga _{0.24} N 25 nm buffer
	HTA/ELO AlN/sapphire substr.

Messung und Berechnung der Schwelle

Laserschwelle

Emissionsspektren von AlGaN basierten optisch angeregten Lasern

Emissionswellenlänge

Gewinnspektren

Gewinnspektren

6 nm SQW laser

12 nm SQW laser

berlin

Zusammenfassung und Ausblick

Motivation

Externe Quanteneffizienz (EQE)

Externe Quanteneffizienz (EQE)

Elektrolumineszenzspektroskopie bei Raumtemperatur

berlin

Technische Universität

Berlin

Temperaturabhängige Elektrolumineszenzspektroskopie

berlin

Technische Universität

Berlin

UVC LED Heterostruktur

- Sechs verschiedene Wachstumstemperaturen der aktiven Zone: 900 °C, 935 °C, 970 °C, 1020 °C, 1060 °C, 1100 °C
- Quadratischer p-Kontakt der Größe 0.001 cm²

Einbindung von Punktdefekten

Spektren und LIVs bei Raumtemperatur

• LIV: light output power (Photostrom)- current (Strom)- Voltage (Spannungs) Kurven

Ergebnisse bei Raumtemperatur

Temperaturabhängige Betriebsspannung bei 10 mA

Temperaturabhängige Spektren

935 °C

Temperaturabhängige Emissionswellenlänge und Lokalisationseffekte

^{[12] [}C. Frankerl et. al., J. Phys. D: Appl. Phys. 127, 095701 (2020)]

berlin

Technische Universität

34

EQE Maximum

Zusammenfassung und Ausblick

Danke für eure Aufmerksamkeit!

Backup Slides Markus

Quantum well width

- Non-zero polarization, band bending
- Reduction of electron and wavefunctions overlap (QCSE)
- Overlap defines matrix element
 - $|M_T|^2 \equiv |\langle u_c | \hat{e} \cdot p | u_v \rangle|^2 |\langle F_2 | F_1 \rangle|^2$
- gain dependent on matrix element $g_{21} \propto |M_T|^2 \rho_r(E_{21}) \cdot (f_2 f_1)$ (Fermi's golden rule)
- wider well reduces overlap
 - → lower achievable gain

Maximum gain wavelength

- Blue-shift with increasing excitation power density due to band filling
- Shift more pronounced on lasers with narrower SQWs
- Limited blue-shift rate due to non-resonant pumping \rightarrow high carrier density in the barriers screening the fields in the in the SQW

Material gain

- Confinement factor defined by overlap between optical mode and active region
- Material gain: $g_{mat} = \frac{g_{mod}}{\Gamma_a} = \frac{g_{net} + \alpha_i}{\Gamma_a}$
- material gain and differential material gain mirror confinement factor

SiLENSe simulation by G.Cardinali

Internal losses

- Internal losses comparable on different lasers
- Trend follows the threshold power density
- Scattering in losses attributed to lateral variation of epitaxial structure

Influence of facet orientation

- Laser bars with different orientations
- Dependent on m-plane, a-plane and ELO stripes
- no apparent change in threshold

Edge-Emitting Lasers (EELs)

- Laser cleaved facets acting as semi-transparent resonator mirrors
- Constructive interference on light (cavity modes)
- Emission wavelength defined by the mode, for which gain is higher than losses
- Emission through the edge

47

- Cavity length of EELs can be easily varied
- Elliptical output beam

AlN 10 nm cap $Al_{0.63}Ga_{0.37}N$ 50 nm p-WG $Al_xGa_{1-x}N$ y nm SQW $Al_{0.63}Ga_{0.37}N:Si 50 nm n-WG$ Al_{0.76}Ga_{0.24}N:Si 900 nm cladding $Al_{0.76}Ga_{0.24}N$ 100 nm buffer AlN-Al_{0.76}Ga_{0.24}N 25 nm buffer HTA/ELO AlN/sapphire substr.

berlin

Technische

Universität Berlin

Optical Gain

- Material gain defined by Fermi's golden rule $g_{mat} \propto |M_T|^2 \rho_r(E_{21}) \cdot (f_2 f_1)$
- Modal gain: $g_{mod} = \Gamma \cdot g_{mat}$ with confinement factor Γ
- Net gain is measured and includes losses:

 $g_{net} = g_{mod} + \alpha_i$

Simulation by M. Guttmann

HTA/ELO AlN/sapphire substr.

Laser structure

TS number	x	у
5873	0.438	3
5858	0.446	6
5877	0.433	9
5862	0.429	12

 AlGaN-based optically-pumped lasers with SQW active region (3 nm, 6 nm, 9 nm, 12 nm)

Technische

Universität Berlin

- Al molar fraction in SQW calibrated to emit at 275 nm at 2 MW/cm²
- Laser scribing into single laser bars

berlin

Measurements by G. Cardinali

- AlGaN energy bandgap dependent on Al molar fraction, is calculated by Vegard's law
- Non-zero net dipole moment (spontaneous polarization)
- Growth of strained layers with different lattice constants causes piezoelectric polarization

- Simulations by B. Witzigmann
- · Polarization fields screening by fundamental states for thicker QWs

Simulations by B. Witzigmann

Gain Simulation 3nm

- 10 meV inh. broadeningno inh. Broadening
 - Simulation by B. Witzigmann
 - Screened Hartee-Fock approximation (5 meV state broadening)

berlin

Technische

Universität Berlin

Reduced polarization charges

- Main transitions:
 - → <e1|h1> and <e1|h2>

- Simulation by B. Witzigmann
- Screened Hartee-Fock approximation (5 meV state broadening)
- Reduced polarization charges

- Main transitions:
 - → <e1|h2> and <e2|h3>

- Determined by gaussian fit of emission peaks
- FWHM below 2 nm for all samples

Influence of cavity length

SQW thickness: 3 nm
SQW thickness: 6 nm
SQW thickness: 9 nm
SQW thickness: 12 nm

- Mirror losses αm increase with decreasing cavity length L

$$\alpha_m = \frac{1}{L} \ln\left(\frac{1}{R}\right)$$

- Higher losses for gain to overcome should increase threshold with decreasing cavity length
- Trend not noticeable

Measurements

- Power series
- Lasing threshold measurements:
 - Spectra for various excitation power densities
 - Full cavity pumped, stripe perpendicular to edge (a)
- Variable stripe length method:
 - Spectra taken for several stripe lengths (50 μ m 500 μ m)
 - Repeated for few excitation power densities
 - Sample at an angle to avoid resonance (b)

a)

Backup Slides Paula

Alterungseffekte

Kontaktgeometrie

Struktur

Layer	x [%]	d [<u>nm]</u>	Doping	Remarks
GaN:Mg	0	300	2%	Сар
14x (Al _x Ga _{1-x} N:Mg / Al _y Ga _{1-y} N:Mg)	80/70	25 (0.9/0.9)	5E-3/4.4E-3	p-SPSL
AlGaN	100	6	-	EBL
AlGaN	83.5	5	-	last barrier
2 x AlGaN(:Si)	83.5	5.	2.02E-4	barriers
3 x AlGaN	70	1	-	QW
AlGaN:Si	83.5	40	4.02E-4	first barrier
AlGaN:Si	87	2200	1E-4	n-side buffer
AlGaN	87	100	-	Buffer
AIN-AIGaN transition	100→87	25	-	Buffer transition
AIN	100	400	-	Smooth buffer
HTA ELO-tmpl.			-	

PL Measurements

LIV bis 100 mA

LIV Kurven

935 °C:

100 K

120 K

140 K

160 K

180 K

200 K

220 K

240 K

260 K

280 K

300 K

320 K

340 K

0.020 0.0

LIV Kurven

970 °C:

0

10

2

0

0.000

0.005

0.010

Current [A]

0.015

Voltage [V]

0

0.000

340 K

0.020

0.005

0.010

Current [A]

0.015

LIV Kurven

1100 °C:

Spektren

Spektren

